
44 The Delphi Magazine Issue 32

Delphi Meets COM: Part 5
by Dave Jewell

The shell extensions that we’ve
looked at previously are exam-

ples of in-process COM servers. As
promised last time round, this
instalment is going to concentrate
on OLE Automation. An OLE Auto-
mation server is an example of an
out-of-process server because it’s
a separate application living in a
different address space to the call-
ing process. We’ll begin by taking a
look at the OLE Automation sam-
ples that Borland included with
Delphi 3. Having dissected the
code in these samples, we’ll be
better-placed to move on to some-
thing a little more adventurous.

If you open the directory
DEMOS\OLEAUTO\AUTOSERV (rela-
tive to where you’ve installed
Delphi 3) you’ll find a couple of
projects called AutoDemo and
MemoEdit. The latter is a very
simple OLE Automation server
which implements an MDI-based
text editor. It’s the MemoEdit appli-
cation which constitutes the
server. AutoDemo is the controller
application, you can see it running
in Figure 1. Effectively, the Auto-
Demo application is a simple
‘remote control’ through which
you can control various aspects of
the server application such as cre-
ating a set of three blank memo
windows, adding text to the win-
dows, tiling and cascading the MDI
children, and then removing the
memo windows.

Nuts And Bolts
Of OLE Controllers
Let’s begin by taking a look at the
code used to implement the con-
troller, AutoDemo. Open the Auto-
Form.pas unit and scroll down to
the TMainForm.FormCreate proce-
dure. You’ll see a line of code
which looks like this:

MemoEdit := CoMemoApp.Create;

MemoEdit is a member variable of
type IMemoApp and it’s being
initialised through a call to

CoMemoApp.Create, but where are
these other goodies defined? If you
look at the uses clause for this
application, you’ll see a unit called
Memo_TLB. The _TLB prefix indicates
that this is a type library expressed
in Pascal. If you open this unit in
the usual way, you’ll find that CoMe-
moApp is defined as follows:

CoMemoApp = class

class function Create: IMemoApp;

class function CreateRemote(const

MachineName: string): IMemoApp;

end;

Because CoMemoApp.Create is a
class function, we don’t need to
create an instance of this class
before calling the function. This
explains how we can immediately
call the Create method in the
controller code. Similarly, if you

➤ Figure 1:
Here's the small
controller application
from Borland's OLE
Automation demo.
The various buttons
allow you to modify
the edit windows of
what's essentially an
MDI-based notebook
program.

IMemoApp = interface(IDispatch)
['{55E49D31-9FFE-11D0-8095-0020AF74DE39}']
function NewMemo: OleVariant; safecall;
function OpenMemo(const FileName: WideString): OleVariant; safecall;
procedure TileWindows; safecall;
procedure CascadeWindows; safecall;
function Get_MemoCount: Integer; safecall;
function Get_Memos(Index: Integer): OleVariant; safecall;
property MemoCount: Integer read Get_MemoCount;
property Memos[Index: Integer]: OleVariant read Get_Memos;

end;

➤ Listing 1

look through the rest of the type
library file, you’ll find the defini-
tion of the IMemoApp interface as
shown in Listing 1.

Thus, the call to CoMemApp.Create
is effectively giving us a pointer to
this interface. It’s this interface
which is ‘exported’ by the Memo-
Edit automation server, and the
various methods in this interface
define the ‘API’ of the class.

As pointed out in last month’s
instalment, the type library encap-
sulates the interfaces, methods
and parameters that are associ-
ated with a particular COM/OLE
server. The Memo_TLB unit is funda-
mentally a Pascal representation
of the type library, but it isn’t the
type library itself. You shouldn’t
try to modify the Memo_TLB unit
because it will automatically be
regenerated by Delphi every time

April 1998 The Delphi Magazine 45

the type library is modified. That
being so, will the real type library
please stand up? If you look
through the files in the project’s
directory you’ll find a file called
MEMOEDIT.TLB. This is the actual
type library, it’s copied into the
OLE Automation server as a binary
resource of type TYPELIB when
Delphi rebuilds the server
executable.

Ok, so we’ve got a type library,
and Delphi has converted it into a
human-readable (and compiler-
readable!) Pascal representation.
Having obtained an interface to
IMemoApp, it’s dead easy for the con-
troller to ‘pull the server’s strings’,
so to speak. For example, when you
click the controller’s Create Memos
button, this line of code gets
executed:

for I := 1 to 3 do
Memos[I] := MemoEdit.NewMemo;

This simply calls the NewMemo
method to create three new MDI
windows in the server. If we look at
the definition for IMemoApp.NewMemo,
we see that its return type is
OLEVariant:.

function NewMemo: OleVariant;
safecall;

Hmmm... so what’s an OLEVariant?
The simple answer is that it’s an
OLE-specific version of Delphi’s
built-in Variant type. As with plain
vanilla Variants, an OLEVariant is
an amorphous type that can be
used to store objects of different
types. However, an OLEVariant can
only store data types that may be
legitimately passed across an OLE
Automation interface. This
excludes certain native Pascal
types such as PChar, Word and
Pointer. As with an ordinary Vari-
ant, OLEVariant is more sophisti-
cated than a simple variant record
type. In particular, it remembers
the type of object which it contains
and, in effect, you can perform
type-specific operations on an
object of type OLEVariant without
the need for any intermediate
typecasting.

To see just what I mean by this,
take a look at Listing 2 which shows

the TMainForm.AddTextButtonClick
method.

For each element of the three-
item array, the standard VarIs-
Empty function is called to deter-
mine if the array element is
assigned. If it is, the Insert method
is called to add text into the desig-
nated memo window. Where on
earth did this Insert method come
from? If you look back in the
Memo_TLB unit, you’ll see that
there’s another interface defined:
IMemoDoc, which encapsulates the
document interface for the Memo-
Edit server and (surprise, sur-
prise!) includes a method called
Insert. It should be obvious from
this that the OLEVariant type
returned by calling NewMemo is actu-
ally an IMemoDoc interface. The
reason we didn’t need to cast the
array item to an IMemoDoc interface
is because the OLEVariant already
‘knows’ what type of automation
object it contains.

Late Binding
Versus Early Binding
Actually, the above isn’t strictly
accurate. It’s perhaps more accu-
rate to say that the OLEVariant type
doesn’t know and doesn’t care
what data type it contains, and nei-
ther does the compiler! Confused?
Think about it like this: when the
method TMainForm.CreateButton-
Click is compiled, the compiler
sees that you’re calling the NewMemo
method of an IMemoApp interface.
Consequently, it’s able to generate
code which directly references the
NewMemo method in the vtable of the
associated object. This is early
binding because the compiler
knows what the vtable looks like
and which method is being called.

However, when you call the
Insert method of some arbitrary
OLEVariant object, the compiler
hasn’t got a clue. It doesn’t know
where the Insert method comes

procedure TMainForm.AddTextButtonClick(Sender: TObject);
var
I: Integer;

begin
for I := 1 to 3 do
if not VarIsEmpty(Memos[I]) then
Memos[I].Insert('This text was added through OLE Automation'#13#10);

end;

➤ Listing 2

from (it can’t reasonably assume
it’s the one referenced in the type
library file) and even if it could
uniquely identify the method being
called, there’s no way of verifying,
at compile-time, that the object in
question supports the method.
This is where late binding comes
into play. In these circumstances,
late binding is the only possibility.
To prove the point, try replacing
the reference to the Insert method
with this:

Memos[I].BambleWeeny(

‘This text was added through ‘+
‘OLE Automation’#13#10);

or even:

Memos[I].TotallyFictitiousMethod(

0, 1, 2, 3);

You’ll find that the compiler will
accept these statements without a
murmur. Once the compiler real-
ises this is a late binding situation,
it adopts a grovelling ‘sure, what-
ever you say, boss’ mentality! The
only thing it will actively prevent is
the passing of a non-automation
compatible argument such as
PChar or Pointer.

Of course, type-checking and
linkage hasn’t been eliminated, it’s
only been deferred. When you try
running the program and the
offending method call is executed,
the Delphi runtime system will
raise an exception with the mes-
sage ‘Method ‘BambleWeeny’ not
supported by automation object’ or
words to that effect. Similarly, if
you refer to an existing method but
enter the wrong number of argu-
ments, or arguments of the wrong
type, then again, an exception will
be raised.

Note that in certain circum-
stances, passing the wrong argu-
ment type will be allowed because
of the implicit type conversions

46 The Delphi Magazine Issue 32

that take place. For example, zero
or 3.1415926 will be happily
accepted as numeric arguments to
the Insert method, whereas what
was really expected was a Wide-
String. Rather than raising an
error, the runtime code will do its
best to reconcile any differences of
opinion by converting the numeric
argument into its alphanumeric
representation.

The Best Of Both Worlds...
Incidentally, if you’ve been follow-
ing the above discussion carefully,
you’ll appreciate that the interface
pointers in OLE Automation allow
both compile-time vtable binding
(early binding) and runtime
dynamic binding through a dispin-
terface. OLE Automation inter-
faces are dual interfaces, a concept
that I haven’t previously dis-
cussed. It’s easy to understand
how a dual interface works:
because it derives from IDispatch,
it implements Invoke, GetIDsOf-
Names and the other IDispatch inter-
faces that we talked about last
month. However, the various IDis-
patch methods only take up a few
slots in the vtable and, following
these methods, we can have any
number of regular methods that
are accessed through direct vtable
indirection.

This type of interface gives us
the best of both worlds. Simple
interpreted languages such as
Visual Basic can access OLE Auto-
mation objects by using the dispin-
terface part of the interface, calling
Invoke to reference the required

methods. On the other hand,
vtable-aware systems such as
Visual C++ and Delphi can ‘hit the
metal’ directly, accessing methods
by early binding through the
vtable. I specifically chose Bor-
land’s AUTOSERV demo because
it’s an excellent demonstration of
how both early and late binding are
often used even within the same
controller application.

For the terminally curious, this
leaves one interesting question.
Namely, in the case of late binding,
what code gets generated by the
compiler and how is this used to
reference the target method at run-
time? To answer that question,
take a look at Listing 3, which rep-
resents a sort of ‘Anorak’s Guide to
the Delphi Late Binding Implemen-
tation.’ This particular code snip-
pet was excerpted from the
AutoDemo controller application
and corresponds to part of the for
loop where the Insert method is
called for each of the three OLE-
Variant items in the array.

Within the for loop, the VarIs-
Empty routine is called to determine
if a particular element of the array
is assigned. If so, then a special run-
time library routine called DispIn-
voke is called to make the actual
late binding method call. DispIn-
voke is defined as being a cdecl rou-
tine, which means that the
parameters are pushed onto the
stack in right to left order. Thus,
when looking at the code listing,
the first parameter is the last item
to be pushed on the stack, and the
last parameter is pushed first! With

:00401B0E 8D84FEE8010000 lea eax, dword ptr [esi+8*edi+000001E8]
:00401B15 E856F5FFFF Call System.VarIsEmpty
:00401B1A 84C0 test al, al
:00401B1C 751C jne 00401B3A
* StringData Ref from Code Obj ->"This text was added through OLE Automation"
:00401B1E 684C1B4000 push 00401B4C
:00401B23 687C1B4000 push 00401B7C
:00401B28 8D84FEE8010000 lea eax, dword ptr [esi+8*edi+000001E8]
:00401B2F 50 push eax
:00401B30 6A00 push 00000000
:00401B32 E819F5FFFF Call System.@DispInvoke
:00401B37 83C410 add esp, 00000010
:00401B3A
// Code deleted for the sake of brevity...
:00401B7C 01 add byte ptr [ecx], al
:00401B7D 0100 add dword ptr [eax], eax
:00401B7F 48 dec eax
:00401B80 49 dec ecx
:00401B81 6E outsb
:00401B82 7365 jnb 00401BE9
:00401B84 7274 jb 00401BFA
:00401B86 0000 add byte ptr [eax], al

➤ Listing 3

this in mind, you’ll see that DispIn-
voke takes four parameters. The
first thing pushed (final parame-
ter!) is a series of items corre-
sponding to the arguments to the
method. In this case, there’s just
one argument: the string that’s
being passed to Insert.

Note that the Delphi Pascal com-
piler doesn’t bother to generate
wide strings on the fly when
passing string literals to OLE Auto-
mation methods that expect a Wid-
eString. Instead, the conversion to
WideString format is performed
inside the runtime library code.

The next thing pushed (third
parameter!) is a pointer to a spe-
cial data structure called the call
descriptor: more on this in a
moment. Next, DispInvoke expects
a pointer to the OLEVariant item
itself. Finally (remember, this is
the first parameter), there’s a
pointer to where the method result
is going to be stashed. Since this is
a procedure call, it’s a Nil pointer
that gets pushed onto the stack.
It’s important that DispInvoke is
defined as a cdecl routine because
of the variable number of method
arguments that are pushed on the
stack. As every good C/C++ pro-
grammer knows, the C calling con-
vention dictates that the caller
performs the stack cleanup which
is what you can see happening at
location $00401B37.

The heart of this implementa-
tion is the call descriptor. In List-
ing 3, the call descriptor is located
at $00401B7C and so a pointer to
this address is what gets pushed
as an argument to DispInvoke. The
call descriptor encapsulates the
name of the method that is called
(can you spot the ASCII string
Insert in Listing 3?) together with
an indication of the number of
parameters passed, and their vari-
ous types.

A full understanding of what’s
going on here is left as an exercise
to the dedicated anorak. If you
want to pursue this further, the
relevant code can be found in Del-
phi’s COMOBJ.PAS source file,
where a DispInvoke call winds its
way down onto a call to the deeply
inscrutable DispatchInvoke proc-
edure which, as you might expect,

April 1998 The Delphi Magazine 47

is essentially a wrapper around a
call to IDispatch.Invoke.

A Server’s Eye View...
Right, so we’ve looked at life from
the perspective of an OLE Automa-
tion controller, and it all looks very
straightforward thanks to the
magic being performed behind the
scenes by the Delphi compiler and
the runtime library. Now it’s time
to take a look at the state of play
from the perspective of the
MemoEdit application. How easy is
it to implement an automation
server using Delphi? Let’s open the
MemoEdit project and take a look.

The automation object which
implements the application level
(IMemoApp) interface is contained in
the file MemoAuto.pas. As ever,
bear in mind that an interface is not
an implementation. The MemoAuto
unit includes Memo_TLB.pas, the
same type library definition as is
included by the controller applica-
tion. Thus, MemoAuto can ‘see’ the
definition of IMemoApp, its job is to
provide the implementation. With
this in mind, look at the definition
of TmemoApp in Listing 4.

This declaration states that TMe-
moApp is derived from TAutoObject
and that it implements the IMemoApp
interface. Because we’re dealing
with a Borland (as opposed to you-
know-who!) development system,
no surplus fat is in evidence. In
other words, IMemoApp implements
six custom methods and all we

➤ Figure 2: And here's the Automation server itself. Because it
shares the MEMO_TLB.pas file with the controller, the server
and controller are guaranteed to have the same understanding
of the various interfaces involved.

type
TMemoApp = class(TAutoObject, IMemoApp)
protected
function Get_MemoCount: Integer; safecall;
function Get_Memos(Index: Integer): OleVariant; safecall;
function NewMemo: OleVariant; safecall;
function OpenMemo(const FileName: WideString): OleVariant; safecall;
procedure CascadeWindows; safecall;
procedure TileWindows; safecall;

end;

➤ Listing 4

have to do is provide code for
those six methods, we don’t have
to muck about providing declara-
tions of low level IDispatch or IUn-
known methods. All the grunt work
is handled transparently by the
TAutoObject. When implementing
an OLE Automation server,
TAutoObject is generally the best
class to derive from. When you
define methods of an automation
object, all methods (apart from
those inherited from IDispatch and
IUnknown) must specify the safe-
call calling convention which
automatically implements excep-
tion handling and errors in a
manner compatible with OLE
conventions.

As you can see, much of the code
in TMemoApp is very straightforward.
The six aforementioned methods
just map down onto methods of the
main form. Thus Get_MemoCount
simply calls the main form’s MDI-
ChildCountmethod, CascadeWindows
calls the main form’s Cascade
method, and so on. In fact, if you
open the MainFrm unit, you’ll find
that, other than the comments,

there’s no hint that this is an OLE
Automation server we’re dealing
with. And that’s rather nice! By
hiving off the automation object
classes into other units, this small
application represents an excel-
lent example to follow when build-
ing your own Automation servers.
You should avoid getting the OLE
interface classes mixed up with the
user interface code, keep them
separate if you can.

More interesting are the three
methods that return OLEVariant as
the function result. NewMemo and
OpenMemo both create new MDI
child windows, while Get_Memos
returns an instance of an existing
child window. You can see that in
all three cases, the method returns
the OleObject property of the
associated TEditForm window. In
order to see what this corresponds
to, we need to take a peek inside
the EditFrm module where we find
that the OleObject property of a
TEditForm is defined like this:

property OleObject:
Variant read GetOleObject;

This equates to the retrieval of a
private field called fMemoDoc which
is of type TMemoDoc. TMemoDoc, in
turn, is an implementation of our
old friend, IMemoDoc. A new TMemo-
Doc object is created by the Auto-
mation server every time that a
native TEditFormwindow is created
and it effectively acts as a ‘proxy’
for the real form when communi-
cating with the Automation con-
troller. The TMemoDoc object has a
pointer to its owning form and
TEditForm has a reference to its
proxy. So, two-way mapping from
one to the other is very simple.

The most important point in all
this, of course, is that the Automa-
tion server and controller both
include the same Memo_TLB.pas

48 The Delphi Magazine Issue 32

file and using this same type
library information to create and
access automation objects which
are passed between them. If you’ve
followed my tutorial on the
undocumented LibIntf unit, or if
you’ve done much work with Bor-
land’s Open Tools API, you’ll real-
ise there’s an analogy here. The
Delphi IDE and installed add-ins
guarantee interoperability by
including the same class declara-
tion templates (such as those in
EditIntf, ToolIntf, and so on) and
in the same way Automation serv-
ers and controllers guarantee
interoperability because they’re
both using the same type library.

In Praise Of Type Libraries...
It goes without saying that, if the
type library changes, then server
and controller must both be
updated. If you’ve still got the
MemoEdit project open in the IDE,
you’ll see that there’s a Type
Library entry on the View menu:
this gives access to Delphi’s
graphical type library editor. When
working with the controller appli-
cation, this menu option will be dis-
abled which is just as it should be,
the type library is owned by the
server, not by the controller.

Let’s dip our feet into the OLE
Automation water by adding a new
method to the IMemoDoc class. We’ll
introduce a new method, MultiIn-
sert, to add the same line of text
multiple times to a document
window. It’s defined like this:

procedure MultiInsert(
const Text: WideString;
Count: Integer);

Choose Type Library from the View
menu to start the type library
editor. If you haven’t got a project
currently loaded, you can open the
existing type library by simply
doing a File|Open, selecting Type
Library in the drop-down file type
list and choosing the existing
MEMOEDIT.TLB file. Make sure the
IMemoDoc interface is selected and
then click the New Method button at
the top of the window. This will add
a new method to the interface and
give it a default name. Type the
above line into the Declaration

box, give it a dispatch ID of 7 and
enter an optional help string.
That’s it! You’ve just added a new
method to an interface. It wasn’t so
hard, was it?

If the Memo_TLB.Pas file is
loaded, you can click the Refresh
button to see Delphi automatically
update the implementation repre-
sentation of the type library. Click
File|Save when you’ve finished
with the type library editor. This
will regenerate the Pascal imple-
mentation file and update the
binary .TLB information at the
same time.

Of course, if we try building the
server now, the compiler will com-
plain that no MultiInsert method
has been defined in the TMemoDoc
class, so add it now. Be sure to
include the safecall specifier at
the end of the declaration. If you
forget, the compiler will complain
that the declaration differs from
that in IMemoDoc. Listing 5 shows
the declaration for MultiInsert:
not exactly rocket-science, but
bear in mind that at this point I’m
simply trying to familiarise you
with the basics of OLE Automation.

With this simple change, the
server will compile and run. Now

open the controller application
and try modifying the TMain-
Form.AddTextButtonClick method
so that it looks like Listing 6.

You can now compile and run
the controller. As you’d expect,
you’ll find that every time you click
the Add Text to Memos button, five
copies of ‘Hello Automated World’
will appear in each memo window.

Conclusions
In this month’s instalment, I have
described the basics of OLE Auto-
mation and shown how late bind-
ing and early binding both have
their part to play in making things
happen.

Even if your primary interest is
in developing ActiveX compo-
nents, it’s still important to have a
solid grasp of OLE Automation
technology. The reason for this is
simple: OCX components are effec-
tively pocket-sized Automation
servers which (because an OCX
file is just a renamed DLL) function
as in-process servers within the
containing application. Container
applications interact with OCX
components using the same OLE
technology that we’ve been
looking at.

➤ Figure 3: Here you can see the addition of the MultiInsert method
to the existing type library. As you work with the type library
editor, you can press the Refresh button to see the changes
immediately reflected in any open window that contains the
Pascal implementation unit for the type library. The rather cute
graduated caption bar is down to Windows 98, by the way!

April 1998 The Delphi Magazine 49

As you’ll no doubt realise at this
point, OLE Automation might have
been an interesting alternative for
building add-ons for the Delphi
IDE. Rather than using the current
approach, imagine a world where
the IDE treats each add-in as a
loadable OCX component. Interest-
ingly, there are some indications in
Delphi 3 that Borland may be
moving in this direction. For
example, the main IDE window is
based around a class which is
called TAppBuilder. This class has

procedure TmemoDoc.MultiInsert (const Text: WideString; Count: Integer);
begin
while Count > 0 do begin
Insert (Text);
Dec (Count);

end;
end;

➤ Listing 5

procedure TMainForm.AddTextButtonClick(Sender: TObject);
var I: Integer;
begin
for I := 1 to 3 do
if not VarIsEmpty(Memos[I]) then
Memos[I].MultiInsert('Hello Automated World' + #13#10, 5);

end;

➤ Listing 6

an automation table (part of the
runtime type information associ-
ated with Delphi executables)
which contains the following two
entries:

function DesignForms(Index:

Integer): OLEVariant; safecall;

function DesignFormCount:

Integer; safecall;

As you can see from the function
names, this is an interface
designed to provide access to the

currently loaded design forms
within the IDE. It’s questionable
whether this is a hint of what we
can expect in Delphi 4, or whether
it’s merely a vestige of some failed
experiment that never came to
fruition. Time will tell! Next time
round, we’ll look at some more
sophisticated examples of OLE
Automation, possibly involving
unspeakably naughty happenings
in the Delphi IDE.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

Visit
www.itecuk.com

for more
Delphi news

	Nuts And Bolts Of OLE Controllers
	Late Binding Versus Early Binding
	The Best Of Both Worlds...
	A Server’s Eye View...
	In Praise Of Type Libraries...
	Conclusions

